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Figure 1. (a) Densities of seagrass measured
throughout Florida Bay for the summers of 2005
and 2006. Density is proportional to symbol size.
(b) Magnitude of Ky, for stations in Florida Bay
occupied during the summers of 2005 and 2006.
Attenuation is proportional to symbol size. Three
distinct regions were identified based on the spatial
variability of shoot density and attenuation:
-Region A: Located in the northern half of Florida
Bay. Ky values in these case two waters ranged
from 0.68 - 1.1 ml. Seagrasses were virtually
absent from every station.

-Region B: Located in the southern half of Florida
Bay. Ky values were lower than Region A
stations and ranged from 0.54 - 0.91 m™'. Seagrass
were present at all stations, but densities varied
within the region.

-Region C: Located outside Florida Bay. K4
values in these case one waters were ~50% less
than Regions A and B. Seagrass density was lower
and less variable than Region B.
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Figure 2. Downwelling diffuse attenuation at 440
nm [K40] plotted as a function of total absorption
[2440) = 2, (Particulate + soluble) + a (water)].
Total absorption was a strong driver of K in

Region B. IOPs from Region A and C represented
the turbid and clear endmembers, respectively, of
the IOP gradient across Florida Bay.
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Figure 3. Mean cumulative absorption spectra for all
three regions. Absorption by dissolved material was
approximately four times greater than absorption by
particulate material in Region B. Both particulate
and dissolved material contributed equally to the
total absorption in Regions A and C. Region C
a,440) Was only 16% of the values found in Regions
A and B.
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Figure 7. (a) Predicted shoot density where P/R = 1 with increasing optical depth (£ = Kppp * 2)
for S. filiforme. Grey and green symbols represent modeled PAR or PUR irradiances respectively
for photosynthetic calculations. OD was a strong driver of shoot density in modeled PAR and
PUR, respectively. PUR and PAR differed in both absolute shoot density and OD at which light
limits seagrass growth. (b) Observed shoot density plotted as a function of OD for the stations
shown in Fig. 1. The modeled shoot densities in 8(a) were consistently greater than maximum
observed shoot densities in 8(b). The observed and modeled results (using PUR) were consistent
in defining the threshold for seagrass growing at OD 2.5 (8% surface irradiance).{
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